Перетворення рівнянь
Перетворення рівнянь ми проводимо при вирішенні рівнянь, коли послідовно замінюємо компоненти рівняння, поки не отримано найбільш просте х = а або сукупність рівнянь такого виду.
При цьому можуть застосовуватися такі методики: приведення подібних, додати (відняти) від обох частин рівняння алгебраїчний вираз або окреме число помножити (поділити) обидві частини рівняння, піднесення до степеня обох частин рівняння вираз однієї змінної через іншу.
Вибір одного або групи методів, послідовність їх виконання зумовлені первинним умовою. Головне, повинен виконуватися принцип тотожності перетворень (замін).
Так само при перетворенні рівнянь необхідна обережність – неправильно перетворюючи рівняння, ми можемо, як придбати зайві рішення, так і втратити рішення даного рівняння. При цьому треба мати на увазі, що придбання зайвих рішень не настільки небезпечно, як втрата існуючих. Адже після того, як рівняння вирішено, можна підставити всі знайдені рішення в задане рівняння і відібрати ті з рішень, які йому задовольняють. А втрачені рішення відновити вже не вийде.
Related posts:
- Рішення диференціальних рівнянь Рішення диференціальних рівнянь. Коли похідні від елементарних функцій виражаються через елементарні функції, то виражати інтеграл через елементарні функції не завжди виходить. В результаті рішення диференціальних рівнянь можна отримати: Очевидну залежність функції від змінної. Рішення диференціального рівняння – це така функція y(x), яка визначена і деяку кількість разів диференціюється в деякій області, при підстановці цієї функції […]...
- Графічний спосіб розв’язання рівнянь Одним із способів вирішення рівнянь є графічний спосіб. Він заснований на побудові графіків функції і визначення точок їх перетину. Розглянемо графічний спосіб вирішення квадратного рівняння a*x ^ 2 + b*x + c=0. Перший спосіб вирішення Перетворимо рівняння a*x ^ 2 + b*x + c=0 до вигляду a*x ^ 2=-b*xc. Будуємо графіки двох функцій y=a*x ^ […]...
- Виділення квадрата двочлена у вирішенні квадратних рівнянь Квадратним рівнянням називають рівняння виду a*x ^ 2 + b*x + c=0, де a, b, c-деякі довільні речові (дійсні) числа, а x-змінна. Причому число а не дорівнює 0. Числа a, b, c називаються коефіцієнтами. Число а-називається старшим коефіцієнтом, число b коефіцієнтом при х, а число з називають вільним членом. Рішення квадратних рівнянь виділенням квадрата двочлена […]...
- Рівняння з одним невідомим Рівність, що містить одне невідоме число, позначене буквою, яке потрібно знайти, називається рівнянням з одним невідомим. 4 + А = 7 Вираз, розташоване зліва від знака рівності, називається лівою частиною рівняння (4 + А); Вираз, розташоване праворуч від знака рівності, називається правою частиною рівняння (7); Число, яке підставляється замість букви, і перетворює рівняння в правильну […]...
- Основні способи розв’язання логарифмічних рівнянь Логарифмічними рівнянням називають рівняння, в якому представлені невідомі величини під знаком логарифма. Рівняння типу log2X=5 або log3(x-1)=0 – логарифмічні. Логарифмічні рівняння, так само як і показові, відносяться до трансцендентним. Найпростішим логарифмічним рівнянням представлено рівняння наступне безпосередньо з формулювання логарифма: Logаx=b, Де а і b – задані числа, Х – невідома змінна. Якщо а – не […]...
- Система двох рівнянь з двома невідомими Системою двох рівнянь з двома невідомими називають два спільно розглянутих рівняння, з одними і тими ж невідомими. Рішенням системи рівнянь з двома невідомими буде пара чисел, при підстановці яких в кожне з рівнянь системи вони перетворюються в справжні рівності. A1x + b1y = c1 a2x + b2y = c2 Наприклад, рішенням наступної системи рівнянь будуть […]...
- Рішення задач за допомогою систем рівнянь Вміти розв’язувати системи лінійних рівнянь це дуже добре, але саме по собі рішення систем рівняння-це лише метод для більш складних завдань. За допомогою систем рівнянь можна вирішувати різні завдання, які зустрічаються нам у житті. Алгебра-це наука про рішення рівнянь і систем рівнянь. Саме таким визначенням користувалися вчені до кінця 20 століття. Відомий вчений Рене Декарт […]...
- Тригонометричні рівняння Рішення тригонометричних рівнянь і систем тригонометричних рівнянь грунтується на рішенні найпростіших тригонометричних рівнянь. Нагадаємо основні формули для вирішення найпростіших тригонометричних рівнянь. Рішення рівнянь виду sin (x)=a. При | a | <=1 x=(-1) ^ k*arcsin (a) + ?*k, де k належить Z. При | a | > 1 рішень не існує. Рішення рівнянь виду cos (x)=a. […]...
- Рішення раціональних нерівностей Вирішити раціональне нерівність, як і будь-яка інша, означає знайти всі його рішення. При їх вирішенні необхідно розуміти різницю між рішення рівнянь і нерівностей. Коли вирішують рівняння, то отримують одне, два, три – якусь кількість рішень. Кожен з коренів можна підставити і перевірити чи є він відповіддю чи ні. Отже, методом підстановки вийде перевірити рішення рівнянь. […]...
- Рішення рівнянь із змінною в знаменнику Існують декілька шляхів (способів) рішення рівнянь зі змінною в знаменнику дробу. Один із способів полягає в тому, що в ліву частину переносяться всі члени рівняння, з правого залишається 0. Далі всі члени рівняння приводяться до спільного знаменника. Дріб може дорівнювати нулю, якщо її чисельник дорівнює нулю, а знаменник не дорівнює нулю. Значить, треба вирішити рівняння, […]...
- Рішення задач за допомогою раціональних рівнянь Раціональні рівняння-це рівняння, у яких ліва і праві частини є раціональними виразами. Якщо в раціональному рівнянні ліва або права частини будуть дробовими виразами, то таке раціональне рівняння називається дробовим. Рішення дробового раціонального рівняння Для початку ознайомимося з дробовими раціональними рівняннями. Загальна схема рішення дробового раціонального рівняння. 1. Знайти спільний знаменник всіх дробів, які входять в […]...
- Чим система відрізняється від сукупності в математиці Вирішенню рівнянь, системи рівнянь або системи нерівностей, завжди приділялося багато уваги при вивченні математики, фізики у шкільній програмі. Метод вирішення системи рівнянь широко застосовується в науці, в статистиці, при вивченні фізичних проблем. Тому цікаво знати сутність понять системи і сукупності. Що таке система і сукупність Система – вибір результатів рішень, які підійдуть усім рівнянням системи. […]...
- Лінійне рівняння з двома змінними Лінійне рівняння з двома змінними-будь-яке рівняння, яке має наступний вигляд: a*x + b*y=с. Тут x і y є дві змінні, a, b, c-деякі числа. Нижче представлені кілька прикладів лінійних рівнянь. 1. 10*x + 25*y=150; 2. x-y=5; 3. -7*X + y=5; Як і рівняння з одним невідомим, лінійне рівняння з двома змінними (невідомими) теж має рішення. […]...
- Яке рівняння називають лінійним Рівняння виду ax = b називають лінійним, якщо a, b – задані числа; x – змінна. Приклади розв’язання лінійних рівнянь Вирішувати класичне лінійне рівняння дуже легко. Для цього слід застосувати властивість ділення – множення діленого і дільника на одне і те ж число, відмінне від нуля не змінює приватне: 5x = 10 (5x) – (1/5) […]...
- Рівняння – прості формули, математичні приклади Рівняння – це основа сучасних обчислень. Починаючись в підручнику 5 класу з математики, вони переслідують людину все життя, допомагаючи в розрахунках. Про простих рівняннях ми сьогодні і поговоримо. Визначення рівняння Що таке рівняння? Це таке собі тотожність, в одній з частин якого є не тільки чисельні, але і літерні значення. Тотожність – це два вираження, […]...
- Перетворення виразів, що містять ступінь з дробовим показником Виразом вигляду a (m / n), де n-деяке натуральне число, m-деяке ціле число і підстава ступеня а більше нуля, називається ступінь з дробовим показником. Причому вірним є наступне рівність. n?(am)=a (m / n). Як ми вже знаємо, числа виду m / n, де n-деяке натуральне число, а m-деяке ціле число, називають дробовими або раціональними числами. […]...
- Показові рівняння (нерівності) Показовими рівнянь (нерівностей), прийнято вважати такі рівняння, в яких невідоме міститься у показнику ступеня. Найпростіше показове рівняння має вигляд: ах = аb, де а > 0, а ≠ 1, х – невідоме. Нехай тут і далі а є позитивне і відмінне від одиниці число. Тоді: 1. Для будь-яких непозитивних значень b рівняння a x = […]...
- Перетворення цілого висловлювання на многочлен У математиці існує багато різних виразів. Деякі з них мають своє, закріплене за ними назву. Розглянемо одне з них. Цілий вираз Цілий вираз-це математичний вираз, складене з чисел і буквених змінних за допомогою дій додавання, віднімання та множення. Також до цілим відносяться висловлювання, які мають у своєму складі поділ на яке або число, відмінне від […]...
- Раціональні рівняння Раціональні рівняння – це рівняння, в яких обидві складові сторони представляють собою раціональні вирази виду: s(x) = 0, або більш широко: s(x) = b(x), де s(x), b(x) – раціональні вирази. Раціональні рівняння – це рівняння, в яких обидві складові сторони представляють собою раціональні вирази виду: S(x) = 0, Або більш широко: S(x) = b(x), Де […]...
- Однорідні тригонометричні рівняння відносно sin та cos Рівняння вважаються однорідним відносно sin і cos, коли всі його члени однаковою мірою відносно sin і cos однакового кута. Розглянемо кілька прикладів однорідних тригонометричних рівнянь: Sin х – cos х = 0, Sin2 х – 5 sin х cos х + 6 cos2 х = 0, Cos2 х – sin х cos х = 0. […]...
- Теорема Вієта Для початку сформулюємо саму теорему: Нехай у нас є наведене квадратне рівняння виду x ^ 2 + b*x + c=0. Припустимо, це рівняння містить коріння x1 і x2. Тоді по теоремі наступні твердження припустимі: 1) Сума коренів x1 і x2 буде дорівнювати від’ємному значенню коефіцієнта b. X1 + X2=-b; 2) Твір цих самих коренів буде […]...
- Перетворення раціональних виразів Цілий вираз-це математичний вираз, складене з чисел і буквених змінних за допомогою дій додавання, віднімання та множення. Також до цілим відносяться висловлювання, які мають у своєму складі поділ на яке або число, відмінне від нуля. Нижче представлені кілька прикладів цілих виразів: 1. 12*a3 + 5*(2*a-1); 2. 7*b; 3. 4*y-((5*y + 3) / 5)-1. Якщо ж […]...
- Рівняння перетину ліній Для того щоб діагностувати взаємне положення довільних ліній, потрібно визначитися з їх рівняннями. Значить, завдання на знаходження розташування точки перетину двох ліній, виражених рівняннями F1(x1;y1) = 0 і F2(x2;y2) = 0, зводиться до визначення точок, координати яких відповідають рівнянням обох ліній, отже, зводиться до розв’язання системи двох рівнянь з двома невідомими: Коли система цих рівнянь […]...
- Ірраціональні нерівності Ірраціональним нерівністю прийнято вважати таку нерівність, які включають невизначені величини або деякі функції невизначених значень під знаком кореня (радикала). Для знаходження результатів ірраціональних нерівностей знайшла широке застосування аналогічна схема виконання перетворень, що і при вирішенні ірраціональних рівнянь: – зведення обох частин нерівності в одну і ту ж ступінь; – введення нових (допоміжних) змінних та ін. […]...
- Як вирішувати лінійне рівняння з однією змінною? Лінійне рівняння з однією змінною має загальний вигляд ax + b = 0. Тут x – це змінна, a і b – коефіцієнти. По-іншому a називають “коефіцієнт при невідомої”, b – “вільний член”. Коефіцієнти це якісь числа, а вирішити рівняння – це значить знайти значення x, при якому вираз ax + b = 0 вірно. […]...
- Графічно вирішити рівняння з коренем Припустимо дано таке рівняння: √x – 0.5x = 0 Потрібно вирішити його графічним способом. Графічний метод розв’язання рівнянь полягає в прирівнювання двох виразів (частин рівняння), малювання графіків цих виразів-функцій на координатної площині, знаходження точок перетину графіків двох функцій. В даному випадку перетворимо рівняння до такого виду: √x = 0.5x Виходять дві функції, чиї графіки слід […]...
- Лінійні графіки функцій Будь-які функції можна намалювати на графіку. Наприклад, у нас є функція y = 2x – 4 Знайдемо для цієї функції пару точок і запишемо їх в таблиці: Перевіримо, при x = 4 Y = 2 * 4 – 4 = 4 (значить, y = 4) І при x = 2 Y = 2 * 2 […]...
- Поняття про диференціальні рівняння У ході вирішення різних практичних завдань виникають рівняння, які пов’язують похідні деякої функції, саму функцію і незалежну змінну. Рівняння, які крім функцій включають в себе ще й похідні цих функцій, називаються диференціальними рівняннями. Наприклад, розглянемо другий закон Ньютона. Згідно нього, при русі матеріальної точки постійної маси по прямій буде справедлива наступна формула F=m*a, де F-сила, […]...
- Як графічно вирішити рівняння? Іноді рівняння вирішують графічним способом. Для цього треба перетворити рівняння так (якщо воно вже не представлено в перетвореному вигляді), щоб ліворуч і праворуч від знака рівності стояли вирази, для яких легко можна намалювати графіки функцій. Наприклад, дано таке рівняння: x² – 2x – 1 = 0 Якщо ми ще не вивчали рішення квадратних рівнянь алгебраїчним […]...
- Винесення і внесення множника з/під кореня Квадратним коренем з числа a називають таке число, квадрат якого дорівнює a. Наприклад, числа-5 і 5 є квадратними коренями з числа 25. Тобто, корені рівняння x ^ 2=25, є квадратними коренями з числа 25. ?(a*b)=?a*?b Квадратний корінь з добутку двох невід’ємних чисел, дорівнює добутку квадратних коренів з цих чисел. Використовуючи це правило, ми можемо навчитися […]...
- Кінематика. Рух точки У відповідності зі способами завдання координат, рух точки можна описати координатним або векторним способом. Розглянемо координатний спосіб завдання руху. Припустимо, рух точки задано функціями всіх трьох її координат від часу: X = x (t), y = y (t), z = z (t). Це кінематичне рівняння руху точки, записані в координатної формі. Всі три рівняння скалярно. […]...
- Корні рівняння Для того, що зрозуміти змив вираження “корінь рівняння” потрібно спершу звернутися до самого поняття “рівняння”. Отже, тим хто хоч трохи знайомий з математикою нескладно сформулювати, що рівняння – це якесь рівність двох величин, яке містить невідоме, або ж, невідомі. При цьому, під коренем рівняння розуміється як раз те саме значення цього невідомого, яке і потрібно […]...
- Кубічні рівняння Кубічне рівняння – це алгебраїчне рівняння третього ступеня, типу: Ax3 + bx2 + cx + d = 0, Причому a не дорівнює 0. Число х буде коренем кубічного рівняння тоді, коли після його підстановки рівняння стає правильною рівністю. У кожного кубічного рівняння з дійсними коефіцієнтами буде принаймні один дійсний корінь, два інших або теж дійсні, […]...
- Логарифмічні рівняння Рішення логарифмічних рівнянь дуже заплутаний і складний математичний процес. Для того щоб знайти правильну відповідь, необхідно слідувати певним правилам від простої маніпуляції до складної. Використовуються властивості ступенів, приватного та логарифмічних творів. Якщо рівняння містить логарифми з різними підставами, то їх потрібно звести до однакового значенням. В першу чергу при вирішенні логарифмічних рівнянь необхідно знайти область […]...
- Про рівняння Максвелла Теорія електромагнітного поля була створена Максвеллом. Він запропонував свою знамениту систему диференціальних рівнянь (рівнянь Максвелла), які дозволяють знайти вектори EF і BF в будь-якій точці заданої області простору по відомим джерелам – зарядам і токам49. Рівняння Максвелла лягли в основу електродинаміки і дозволили пояснити всі відомі на той момент явища електрики і магнетизму. Але мало […]...
- Перетворення координат Як вже було зазначено, координати точки відносно, вони змінюються при переході в іншу систему координат. У багатьох випадках, потрібно перейти з однієї системи координат в іншу. Отримаємо формули таких перетворень для одного окремого випадку – зсуву початку відліку на площині. Нехай на відомій площині задано дві декартові системи координат XOY (яку умовно назвемо “вихідної”) і […]...
- Теорія чисел Розділ математики займається вивченням цілих чисел і їх властивостей називається теорія чисел або вища арифметика. Серед цілих чисел особливе місце займають натуральні числа, які можна розділити на два класи: прості і складні. До першого класу відносяться числа, які мають своїми делителями два числа: одиницю й саме себе. До другого класу відносяться всі інші числа. Прості […]...
- Рівняння трьох моментів Статично невизначені балки часто називають нерозрізними балками. Розрахунок для них, як і інших статично невизначених систем, проводиться за допомогою методу сил: – Визначається ступінь статичної невизначеності системи методом підрахунку зайвих зв’язків; – Зайві зв’язку відкидаються і замінюються невідомими зусиллями (визначається основна система); – Складаються додаткові рівняння деформації, засновані на положенні, що переміщення в основній системі […]...
- Рішення нерівностей другого степеня з однією змінною Розглянемо невелику задачу. Є деякий прямокутник. Його сторони рівні 2см і 3 см. Кожну сторону прямокутника збільшили на однакову кількість сантиметрів. Після цього площа прямокутника стала більше на 12 см2. Як змінилася кожна зі сторін? Рішення. Бо сторони збільшили на одне і теж число, позначимо це число за х. Тепер можемо записати формули сторін нового […]...
- Перетворення енергії і використання машин Ось уже близько двохсот років пройшло з тих пір, як почалося широке використання людиною всіляких машин. Ці машини приводяться в рух двигунами, які в свою чергу отримують енергію від того чи іншого джерела. З механічної точки зору використання машин зводиться до того, що з їх допомогою якісь сили здійснюють роботу. Але зробити роботу – значить […]...