Рівняння
Завдання. На лівій чашці терезів лежать кавун і гиря в 2 кг, а на правій чашці – гиря в 5 кг. Ваги знаходяться в рівновазі. Чому дорівнює маса кавуна?
Рішення. Позначимо невідому масу кавуна буквою х. Так як ваги знаходяться в рівновазі, повинно виконуватися рівність х + 2 = 5.
Нам треба знайти таке значення х, при якому виконується ця рівність. За змістом віднімання, таким значенням буде різницю чисел 5 і 2, тобто 3. Значить, маса кавуна дорівнює 3 кг. Пишуть: х = 3.
Якщо в рівність входить буква, то рівність може бути вірним при одних значеннях цієї букви і невірним при інших її значеннях.
Наприклад, рівність х + 2 = 5 вірно при x = 3 і невірно при х = 4.
Рівнянням називають рівність, що містить букву, значення якої треба знайти.
Значення букви, при якому з рівняння виходить правильне числове рівність, називають коренем рівняння.
Наприклад, коренем рівняння х + 2 = 5 є число 3.
Вирішити рівняння – значить знайти всі його корені (або переконатися, що це рівняння не має жодного кореня).
Приклад 1. Вирішимо рівняння х + 12 = 78.
Рішення. За змістом віднімання, невідоме доданок дорівнює різниці суми та іншого доданка.
Тому х = 78 – 12, тобто х = 66.
Число 66 є коренем рівняння х + 12 = 78, тому що 66 + 12 = 78.
Related posts:
- Рівняння з одним невідомим Рівність, що містить одне невідоме число, позначене буквою, яке потрібно знайти, називається рівнянням з одним невідомим. 4 + А = 7 Вираз, розташоване зліва від знака рівності, називається лівою частиною рівняння (4 + А); Вираз, розташоване праворуч від знака рівності, називається правою частиною рівняння (7); Число, яке підставляється замість букви, і перетворює рівняння в правильну […]...
- Корні рівняння Для того, що зрозуміти змив вираження “корінь рівняння” потрібно спершу звернутися до самого поняття “рівняння”. Отже, тим хто хоч трохи знайомий з математикою нескладно сформулювати, що рівняння – це якесь рівність двох величин, яке містить невідоме, або ж, невідомі. При цьому, під коренем рівняння розуміється як раз те саме значення цього невідомого, яке і потрібно […]...
- Як вирішувати лінійне рівняння з однією змінною? Лінійне рівняння з однією змінною має загальний вигляд ax + b = 0. Тут x – це змінна, a і b – коефіцієнти. По-іншому a називають “коефіцієнт при невідомої”, b – “вільний член”. Коефіцієнти це якісь числа, а вирішити рівняння – це значить знайти значення x, при якому вираз ax + b = 0 вірно. […]...
- Лінійне рівняння з двома змінними Лінійне рівняння з двома змінними-будь-яке рівняння, яке має наступний вигляд: a*x + b*y=с. Тут x і y є дві змінні, a, b, c-деякі числа. Нижче представлені кілька прикладів лінійних рівнянь. 1. 10*x + 25*y=150; 2. x-y=5; 3. -7*X + y=5; Як і рівняння з одним невідомим, лінійне рівняння з двома змінними (невідомими) теж має рішення. […]...
- Кубічні рівняння Кубічне рівняння – це алгебраїчне рівняння третього ступеня, типу: Ax3 + bx2 + cx + d = 0, Причому a не дорівнює 0. Число х буде коренем кубічного рівняння тоді, коли після його підстановки рівняння стає правильною рівністю. У кожного кубічного рівняння з дійсними коефіцієнтами буде принаймні один дійсний корінь, два інших або теж дійсні, […]...
- Яке рівняння називають лінійним Рівняння виду ax = b називають лінійним, якщо a, b – задані числа; x – змінна. Приклади розв’язання лінійних рівнянь Вирішувати класичне лінійне рівняння дуже легко. Для цього слід застосувати властивість ділення – множення діленого і дільника на одне і те ж число, відмінне від нуля не змінює приватне: 5x = 10 (5x) – (1/5) […]...
- Як графічно вирішити рівняння? Іноді рівняння вирішують графічним способом. Для цього треба перетворити рівняння так (якщо воно вже не представлено в перетвореному вигляді), щоб ліворуч і праворуч від знака рівності стояли вирази, для яких легко можна намалювати графіки функцій. Наприклад, дано таке рівняння: x² – 2x – 1 = 0 Якщо ми ще не вивчали рішення квадратних рівнянь алгебраїчним […]...
- Графічно вирішити рівняння з коренем Припустимо дано таке рівняння: √x – 0.5x = 0 Потрібно вирішити його графічним способом. Графічний метод розв’язання рівнянь полягає в прирівнювання двох виразів (частин рівняння), малювання графіків цих виразів-функцій на координатної площині, знаходження точок перетину графіків двох функцій. В даному випадку перетворимо рівняння до такого виду: √x = 0.5x Виходять дві функції, чиї графіки слід […]...
- Однорідні тригонометричні рівняння відносно sin та cos Рівняння вважаються однорідним відносно sin і cos, коли всі його члени однаковою мірою відносно sin і cos однакового кута. Розглянемо кілька прикладів однорідних тригонометричних рівнянь: Sin х – cos х = 0, Sin2 х – 5 sin х cos х + 6 cos2 х = 0, Cos2 х – sin х cos х = 0. […]...
- Спосіб вирішення ірраціональних рівнянь Спосіб вирішення ірраціональних рівнянь полягає у звільненні від радикалів вихідних рівнянь і зведення їх до відомих типів алгебраїчних рівнянь. Виконують це почленным зведенням ірраціонального рівняння в потрібну ступінь. Наприклад: X = √3 – x. Безліч допустимих значень шуканої величини х визначається нерівністю х ≤ 3. Для того щоб знайти серед безлічі значень корені рівняння, необхідно […]...
- Квадратний корінь Квадратним коренем з числа a називають таке число, квадрат якого дорівнює a. Наприклад, числа-5 і 5 є квадратними коренями з числа 25. Тобто, корені рівняння x ^ 2=25, є квадратними коренями з числа 25. Поняття арифметичного квадратного кореня Існує так само поняття арифметичний квадратний корінь. Арифметичним квадратним коренем з числа a називається невід’ємне число, квадрат […]...
- Рівняння – прості формули, математичні приклади Рівняння – це основа сучасних обчислень. Починаючись в підручнику 5 класу з математики, вони переслідують людину все життя, допомагаючи в розрахунках. Про простих рівняннях ми сьогодні і поговоримо. Визначення рівняння Що таке рівняння? Це таке собі тотожність, в одній з частин якого є не тільки чисельні, але і літерні значення. Тотожність – це два вираження, […]...
- Визначення кореня n-го ступеня Розглянемо наступний приклад. x4=16. Ми можемо записати це рівняння в наступному вигляді: X4-16=0 або використовуючи формулу різниці квадратів так: (X2-4)*(x2 +4)=0. Твір двох співмножників дорівнює нулю, якщо хоча б один з них дорівнює нулю. Вираз x2 +4 не може дорівнювати нулю, отже, залишається тільки (x2-4)=0. Вирішуємо його, отримуємо дві відповіді. Відповідь: x=-2 і x=2. Отримали, […]...
- Раціональні рівняння Раціональні рівняння – це рівняння, в яких обидві складові сторони представляють собою раціональні вирази виду: s(x) = 0, або більш широко: s(x) = b(x), де s(x), b(x) – раціональні вирази. Раціональні рівняння – це рівняння, в яких обидві складові сторони представляють собою раціональні вирази виду: S(x) = 0, Або більш широко: S(x) = b(x), Де […]...
- Метод підстановки при вирішенні системи лінійних рівнянь При вирішенні системи лінійних рівнянь з двома змінними можна використовувати графічний метод. Однак алгебраїчний є більш надійним. Одним з алгебраїчних методів є метод підстановки. Суть методу підстановки полягає в наступному. В одному рівнянні (не важливо якому) системи одна змінна виражається через іншу. Після цього в друге рівняння системи замість відповідної змінної підставляється вираз, якому дорівнює […]...
- Виділення квадрата двочлена у вирішенні квадратних рівнянь Квадратним рівнянням називають рівняння виду a*x ^ 2 + b*x + c=0, де a, b, c-деякі довільні речові (дійсні) числа, а x-змінна. Причому число а не дорівнює 0. Числа a, b, c називаються коефіцієнтами. Число а-називається старшим коефіцієнтом, число b коефіцієнтом при х, а число з називають вільним членом. Рішення квадратних рівнянь виділенням квадрата двочлена […]...
- Найпростіше тригонометричне рівняння cos х = а Існує можливість відобразити кожен корінь рівняння cos х=а, як абсциссу якоїсь точки перетину косинусоиды у = cos х і прямої у = а, і, відповідно вірно зворотне, абсциса будь-якої такої точки перетину буде одним з коренів цього рівняння. Як бачимо, безліч всіх коренів рівняння відповідає множині абсцис всіх точок перетину косинусоиды у = cos х […]...
- Тригонометричні рівняння Рішення тригонометричних рівнянь і систем тригонометричних рівнянь грунтується на рішенні найпростіших тригонометричних рівнянь. Нагадаємо основні формули для вирішення найпростіших тригонометричних рівнянь. Рішення рівнянь виду sin (x)=a. При | a | <=1 x=(-1) ^ k*arcsin (a) + ?*k, де k належить Z. При | a | > 1 рішень не існує. Рішення рівнянь виду cos (x)=a. […]...
- Рівняння трьох моментів Статично невизначені балки часто називають нерозрізними балками. Розрахунок для них, як і інших статично невизначених систем, проводиться за допомогою методу сил: – Визначається ступінь статичної невизначеності системи методом підрахунку зайвих зв’язків; – Зайві зв’язку відкидаються і замінюються невідомими зусиллями (визначається основна система); – Складаються додаткові рівняння деформації, засновані на положенні, що переміщення в основній системі […]...
- Поняття про диференціальні рівняння У ході вирішення різних практичних завдань виникають рівняння, які пов’язують похідні деякої функції, саму функцію і незалежну змінну. Рівняння, які крім функцій включають в себе ще й похідні цих функцій, називаються диференціальними рівняннями. Наприклад, розглянемо другий закон Ньютона. Згідно нього, при русі матеріальної точки постійної маси по прямій буде справедлива наступна формула F=m*a, де F-сила, […]...
- Показові рівняння (нерівності) Показовими рівнянь (нерівностей), прийнято вважати такі рівняння, в яких невідоме міститься у показнику ступеня. Найпростіше показове рівняння має вигляд: ах = аb, де а > 0, а ≠ 1, х – невідоме. Нехай тут і далі а є позитивне і відмінне від одиниці число. Тоді: 1. Для будь-яких непозитивних значень b рівняння a x = […]...
- Логарифмічні рівняння Рішення логарифмічних рівнянь дуже заплутаний і складний математичний процес. Для того щоб знайти правильну відповідь, необхідно слідувати певним правилам від простої маніпуляції до складної. Використовуються властивості ступенів, приватного та логарифмічних творів. Якщо рівняння містить логарифми з різними підставами, то їх потрібно звести до однакового значенням. В першу чергу при вирішенні логарифмічних рівнянь необхідно знайти область […]...
- Тотожності Розглянемо дві рівності: 1. a12*a3=a7*a8 Це рівність буде виконуватися при будь-яких значеннях змінної а. Областю допустимих значень для того рівності буде все безліч дійсних чисел. 2. a12: a3=a2*a7. Це нерівність буде виконуватися для всіх значень змінної а, крім а рівного нулю. Областю допустимих значень для цієї нерівності буде все безліч дійсних чисел, крім нуля. Про […]...
- Найпростіше тригонометричне рівняння sin х = а Існує можливість відобразити кожен корінь рівняння sin х = а, як абсциссу якоїсь точки перетину синусоїди y =ѕіпх і прямої у = а, і, відповідно вірно зворотне, абсциса будь-якої такої точки перетину виступає одним з коренів рівняння. При | а| >1 синусоїда у = sin х не перетнеться з прямою у = а. В даному […]...
- Схеми і рівняння реакцій Хімічні реакції зазвичай описують за допомогою рівнянь. Хімічним рівнянням називають умовну запис хімічної реакції за допомогою хімічних знаків і формул. У лівій частині рівняння реакції записують формули речовин, які вступають в реакцію (реагентів), а в правій – формули кінцевих продуктів реакції (рис. 130). Розглянемо реакцію утворення води з кисню і водню. Хімічна формула газоподібного кисню […]...
- Рівняння кола Окружністю прийнято позначати множину всіх точок площини, рівновіддалених від однієї точки – від центру. У формулюванні колу згадується відстань між точкою кола і центром. Формула відстані між двома точками М1(х1; у1) і М2(х2; у2) має вигляд: У нашому випадку: (М1 М2)2 = (х2 – х1) 2+(у2 – у1) 2. Застосувавши формулу і формулювання кола, отримуємо […]...
- Квадратний тричлен та його корінь Квадратним тричленної називають тричлен виду: A*x2 + b*x + c, Де A, b, c – деякі довільні речові (дійсні) числа; X – змінна. Причому число а не повинно дорівнювати нулю. Числа a, b, c називаються коефіцієнтами. Число а-називається старшим коефіцієнтом, число b коефіцієнтом при х, а число с називають вільним членом. Коренем квадратного тричлена a*x2 […]...
- Співвідношення між тригонометричними функціями одного і того ж кута Спробуємо відшукати залежність між основними тригонометричними функціями одного і того ж кута. Співвідношення між косинусом і синусом одного і того ж кута На наступному малюнку представлена система координат Оху із зображеною в ній частиною одиничної півкола ACB з центром в точці О. Ця частина є дугою одиничному колі. Одинична окружність описується рівнянням X2 + y2=1. […]...
- Рівняння Дірака Як зазначено у статті “Антиречовина”, рівняння фізики іноді призводять до таких наслідків, яких не чекав навіть їх першовідкривач. Фізик Френк Вільчек у своєму нарисі про зрівняння Дирака писав, що могутність подібних рівнянь може здатися воістину чарівним. У 1927 р Поль Дірак спробував знайти аналог хвильового рівняння Шредінгера, який був би сумісний з положеннями спеціальної теорії […]...
- Термохімічні рівняння Більшість реакцій протікають при постійному тиску. Тому енергетичний ефект реакції оцінюють саме зміною ентальпії або тепловим ефектом. Рівняння реакції, для якої зазначаються відповідні цієї реакції зміною ентальпії ∆Н або тепловий ефект Qp, називають термохімічним. Хімічні реакції, під час протікання яких відбувається зменшення ентальпії системи (Н < 0) і в навколишнє середовище виділяється теплота (Qp > […]...
- Рівняння змінного струму Виникає питання, як сила струму в рамці зростає від нуля до максимуму, а потім знову падає до нуля? Величина струму, очевидно, залежить від сили Лоренца. Значить, сила Лоренца змінюється за час обороту рамки. Зауважимо, при повороті рамки змінюється кут, під яким заряди всередині рамки перетинають лінії поля магніту. Підказку дає формула Фарадея (38.2). З неї […]...
- Рішення диференціальних рівнянь Рішення диференціальних рівнянь. Коли похідні від елементарних функцій виражаються через елементарні функції, то виражати інтеграл через елементарні функції не завжди виходить. В результаті рішення диференціальних рівнянь можна отримати: Очевидну залежність функції від змінної. Рішення диференціального рівняння – це така функція y(x), яка визначена і деяку кількість разів диференціюється в деякій області, при підстановці цієї функції […]...
- Хвильове рівняння Шредінгера “Рівняння Шредінгера дало вченим можливість уявити собі досліджувані ними атомні системи і передбачати їх поведінку”, – пише фізик Артур Міллер. Шредінгер отримав своє рівняння під час канікул на лижному курорті в Швейцарії, де він відпочивав зі своєю тодішньою коханкою, яка, ймовірно, стимулювала його інтелектуальні та “еротичні вибухи”, як він сам це називав. Хвильове рівняння Шредінгера […]...
- Рівняння для різних видів кривих Лемниската Бернуллі, плоска алгебраїчна крива, в прямокутних координатах описується рівнянням: (Практично усі двійки – ступені) (х2 + у2) 2 = 2с2(х2 – у2), В полярній: P2= 2c2 cos2φ. Причому, 2с – відстань між фокусами, розміщені вони на осі 0х, і початок координат навпіл поділяє відрізок між ними. Троянда – плоска крива, що нагадує символічне зображення […]...
- Рівняння окисно-відновних реакцій Багато хімічні реакції зрівнюються простим підбором коефіцієнтів. Але іноді виникають складності: кількість атомів якого-небудь елемента в лівій і правій частинах рівняння ніяк не вдається зробити однаковим без того, щоб не порушити “рівноваги” між атомами інших елементів. Найчастіше такі складнощі виникають в рівняннях окисно-відновних реакцій. Для їх зрівнювання використовують кілька способів, з яких ми поки розглянемо […]...
- Про рівняння Максвелла Теорія електромагнітного поля була створена Максвеллом. Він запропонував свою знамениту систему диференціальних рівнянь (рівнянь Максвелла), які дозволяють знайти вектори EF і BF в будь-якій точці заданої області простору по відомим джерелам – зарядам і токам49. Рівняння Максвелла лягли в основу електродинаміки і дозволили пояснити всі відомі на той момент явища електрики і магнетизму. Але мало […]...
- Як складаються рівняння хімічних реакцій? Для опису протікають хімічних реакцій складаються рівняння хімічних реакцій. У них зліва від знака рівності (або стрілки →) записуються формули реагентів (речовин, що вступають в реакцію), а праворуч – продукти реакції (речовини, які вийшли після хімічної реакції). Оскільки йдеться про зрівняння, то кількість атомів в лівій частині рівняння повинно бути рівним тому, що є в […]...
- Квадратний корінь з ступеня Квадратним коренем з числа a називають таке число, квадрат якого дорівнює a. Наприклад, числа-5 і 5 є квадратними коренями з числа 25. Тобто, корені рівняння x ^ 2=25, є квадратними коренями з числа 25. Тепер необхідно навчитися витягувати квадратний корінь з ступеня. Є два основних правила: Правило № 1 Якщо a>=0 і n-деяке натуральне число, […]...
- Рівняння стану ідеального газу – коротко У цій главі ви не зустрінете принципово нових відомостей про газах. Мова піде про наслідки, які можна отримати з поняття температури та інших макроскопічних параметрів. Основне рівняння молекулярнокінетіческой теорії газів впритул наблизило нас до встановлення зв’язків між цими параметрами. Як можна розрахувати масу повітря в кабінеті фізики? Які параметри повітря будуть необхідні для визначення цієї […]...
- Знаходження невідомих за допомогою тотожності Тотожності дуже зручні, щоб знаходити відповіді в рівняннях (вираження, де дві частини зрівняні між собою – тотожні), завданнях та інших життєвих питаннях. Наприклад, у нас є рівняння з одним невідомим, тобто в вираженні частина цифр замінена однією буквою, в даному випадку x (читається, звичайно, ікс, а не х): 3x + 5 = 1 – x […]...