Системи найменування чисел
Людство розробило 2 сучасні системи найменування чисел – американська (коротка) та європейська (англійська, довга) система найменування чисел.
Американська (коротка) система найменування чисел.
В американській, або короткої системі найменування чисел, побудова назви кожного великого числа починається з латинської порядкового числівника в кінець якого приставляється суфікс “-ілліон”. Винятком є лише “мільйон”, що є назвою числа тисяча (лат. mille) і збільшувального суфікса “-ілліон”. Таким чином отримують назви чисел – мільярд, трильйон, квадрильйон, квинтиллион, секстиллион і так далі.
Коротку систему найменування чисел застосовують у США, Канаді, Великобританії, Греції та Туреччини. Число нулів у числі, яке записано по американській системі найменування чисел, можна легко обчислити за допомогою формули 3-x+3 (де x – латинське числівник).
Деякі країни (і Україна) “більйон” замінюють словом “мільярд”.
Європейська (англійська, довга) система найменування чисел.
Найпоширенішою системою найменування чисел є європейська (англійська) або довга система. Побудова назви числа в цій системі починається з додавання суфікса “-іліон” до латинського числительному. Назва числа 1 000 разів більшого попереднього формується з того ж латинського числівника, але в цьому випадку береться суфікс “-іліард”. Тобто після трильйона в довгій системі найменування чисел слід триллард, а ось після нього квадрильйон, далі квадриллард і так далі.
Кількість нулів у числі, яке записано в довгій системі і закінчується суфіксом “-ілліон”, обчислюється за допомогою формули 6-x (де x – латинське числівник) і за формулою 6-x+3 для чисел, які закінчуються на “-ллард”.
Related posts:
- Системи числення. Переклад чисел Система числення – прийнятий спосіб запису чисел і зіставлення цим записам реальних значень. Всі системи числення можна розділити на 2 класи: позиційні і непозиційні. Для запису чисел в різних системах числення використовується деяка кількість відмінних один від одного знаків. Число таких знаків в позиційній системі числення називається основою системи числення. У позиційній системі числення число […]...
- Види системи числення Система числення – це сукупність правил найменування і записи чисел. У будь-якій системі числення для подання чисел вибираються деякі символи (цифри, букви, рисочки і т. Д.), Які називаються цифрами. Найпростіша система числення – одинична, або унарна. У ній використовується тільки один символ: паличка, камінчик і т. Д. Така система числення використовувалася в основному народами, що […]...
- Позначення натуральних чисел Для рахунку предметів застосовують натуральні числа. Будь-яке натуральне число можна записати за допомогою десяти цифр: 0, 1,2, 3, 4, 5, 6, 7, 8, 9. Таку запис чисел називаютдесятічной. Послідовність всіх натуральних чисел називають натуральним рядом: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, […]...
- Віднімання натуральних чисел. Властивості різниці Віднімання (зменшення) – одна з 4-х арифметичних операцій (множення, ділення, додавання, віднімання), обернена додаванню. Позначають за допомогою знака ” мінус “−”. Це дія, за допомогою якого за сумою й одним з доданків можна знайти другий доданок. Число, з якого віднімають, називають уменьшаемое, а число, яке віднімаємо, – від’ємник. Підсумок дій віднімання називається різниця. Нехай нам […]...
- Подільність натуральних чисел Ділення – це дія, зворотне множенню. Розглянемо більш детально ділення натуральних чисел. Натуральними числами називають числа, які використовуються для рахунку. Кожному кількістю предметів рахунку відповідає деяке натуральне число. Якщо предметів для рахунку немає, то використовується значення 0, але при рахунку предметів ми ніколи не починають з 0, і відповідно число 0 не можна віднести до […]...
- Що таке “порівняння натуральних чисел”? Давайте для початку визначимося, що ми будемо розуміти під порівнянням двох натуральних чисел. Уявімо таку картину: на дереві розмістилася зграя з 7 птахів, а на іншому дереві – зграя з 5 десятків птахів. Начебто і на одному дереві зграя птахів, і на іншому – зграя птахів. Але ці зграї не схожі одна на іншу. Ось […]...
- Доведіть, що множина простих чисел нескінченна Одним із властивостей простих чисел є твердження, що безліч простих чисел нескінченно (т. Е. Серед простих чисел немає найбільшого). Довів це властивість простих чисел ще Евклід, використовуючи метод від протилежного. Доказ виглядає приблизно так. Припустимо, що безліч простих чисел звичайно, інші числа є складовими. Знайдемо добуток всіх існуючих простих чисел і до цього результату додамо […]...
- Таблиця квадратів натуральних чисел Таблиця квадратів натуральних чисел від 1 до 100. Квадрат числа визначення: квадратом числа називається результат множення числа на точно таке ж число. Кажуть, що для того, щоб звести число в квадрат, потрібно це число помножити саме на себе. За математичну точність наведених визначень я відповідальності не несу, написав, як розумію. Для бюрократів від математики раджу […]...
- Властивості додавання натуральних чисел Додавання натуральних чисел грунтується на складання 2-х натуральних чисел. Складання 3-х і більше чисел виглядає як послідовне додавання 2-х чисел. Крім того, в силу переместительного і сочетательного властивості додавання, числа, які складаються можна міняти місцями і замінювати будь-2 складаються з чисел за їх сумою. Дія додавання маленьких натуральних чисел можна виробляти в думці або на […]...
- Сенс ділення натуральних чисел На підставі озвученого сенсу ділення надаємо поділу двох натуральних чисел. При цьому будемо розрізняти натуральне число, яке ділять, і натуральне число, на яке ділять. Нам відомо, що натуральні числа пов’язані з кількістю деяких предметів. Будемо вважати, що число, яке ділять, визначає кількість предметів у вихідному множині. Сенс, який несе в собі результат ділення двох натуральних […]...
- Правила складання натуральних чисел Арифметична операція додавання чисел позначається значком “плюс” (+). A + B = C Натуральні числа А і В називаються складовими; Число З називається сумою числі А і В або результатом складання (оскільки А і В є натуральними числами, то і число С завжди буде натуральним числом). Властивості додавання натуральних чисел: Переместительное властивість – від перестановки […]...
- Представлення чисел в ЕОМ 32-розрядні процесори можуть працювати з оперативною пам’яттю ємністю до 232-1, а адреси можуть записуватися в діапазоні 00000000 – FFFFFFFF. Однак у реальному режимі процесор працює з пам’яттю до 220-1, а адреси потрапляють в діапазон 00000 – FFFFF. Байти пам’яті можуть об’єднуватися в поля як фіксованою, так і змінної довжини. Словом називається поле фіксованої довжини, що […]...
- Множення чисел до 20 1 крок. Для прикладу візьмемо два числа – 16 і 18. До одного з чисел додаємо кількість одиниць другого – 16 + 8 = 24 2 крок. Отримане число множимо на 10 – 24 * 10 = 240 3 крок. Далі до результату додаємо твір одиниць 16 і 18 – 240 + 6 * 8 […]...
- Ознака подільності чисел Для зручності користування, ознаки подільності чисел на 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 представлені в таблиці. Крім цих ознак подільності чисел, існують ознаки подільності і на інші числа. На 2 (два) діляться всі числа, у яких останньою цифрою є 0 (нуль), 2 (два), 4 (чотири), 6 (шість), 8 (вісім). Іншими словами, […]...
- Рішення системи лінійних рівнянь з двома змінними Ми вже знайомі з поняттям лінійне рівняння з двома невідомими. Рівняння можуть в одній задачі присутнім як поодинці, так і по кілька рівнянь відразу. У таки випадках рівняння об’єднують в систему рівнянь. Що таке система лінійних рівнянь Система рівнянь-це два або кілька рівнянь, для яких необхідно знайти всі їх спільні рішення. Зазвичай для запису системи […]...
- Повідомлення “Історія чисел” Людина винайшла число для того, щоб якось позначати для себе та інших результати рахунки і вимірювання. Мабуть, перші поняття про число у людей з’явилися ще в епоху палеоліту, але розвинулися вже в неоліті. Першою сходинкою в появі чисел, мабуть, стало усвідомлення поділу заходи на “один” і “багато”. У Стародавньому світі вперше стали застосовуватися спеціальні знаки […]...
- Непозиційні системи числення Відмітна особливість непозиційних систем числення полягає в тому, що величина, яку позначає цифра, не залежить від положення в числі. Таким чином, система може накладати обмеження на положення цифр. Наприклад, розташування цифр в порядку убування або зростання. Існує кілька видів непозиційних систем числення. Розглянемо більш докладно кожну з них. Першою різновидів непозиційних систем числення є Біноміальна […]...
- Множення натуральних чисел і його властивості Якщо концертний зал висвітлюється 3 люстрами по 25 лампочок в кожній, то всього лампочок в цих люстрах буде 25 + 25 + 25, тобто 75. Суму, в якій всі складові рівні один одному, записують коротше: замість 25 + 25 + 25 пишуть 25 – 3. Значить, 25 – 3 = 75. Число 75 називають твором […]...
- Системи числення – інформатика Системи числення (СЧ) – це правила, що дозволяють записувати різні числа за допомогою цифр або ж різних символів. Існує два основні класи СЧ – це позиційні і непозиційної. При використанні позиційних систем числення використовують кілька знаків (цифр), які називаються підставою СЧ. Нижче в таблиці ви можете побачити деякі з таких систем: Основа Система числення Знаки […]...
- Теорія чисел Розділ математики займається вивченням цілих чисел і їх властивостей називається теорія чисел або вища арифметика. Серед цілих чисел особливе місце займають натуральні числа, які можна розділити на два класи: прості і складні. До першого класу відносяться числа, які мають своїми делителями два числа: одиницю й саме себе. До другого класу відносяться всі інші числа. Прості […]...
- Піраміда чисел, або чисельності Піраміда чисел, або чисельності, – це графічне відображення чисельності організмів різних видів на кожному трофічному рівні екосистеми в деякий момент часу (рис. 19). Кількість організмів показано відповідною довжиною або площею прямокутника. Піраміди чисельності відбивають лише щільність організмів на кожному трофічному рівні, але не швидкість їх відновлення. Зазвичай з кожною ланкою кількість особин зменшується. Хижаки, як […]...
- Системи числення (десятирічна, двійкова, вісімкова і т. д.) Тобто цифри, якими ми звикли користуватися в десяткового формі (системі) обчислення (спираючись на десятки, сотні, тисячі, …), переводяться в комп’ютері в двійкову систему числення, де все спирається на одиницю і нуль. Слідкуйте за думкою. Так утворюються десяткові цифри: Наприклад, 2573,8 = 2 * 1000 + 5 * 100 + 7 * 10 + 3 * […]...
- Повідомлення “Системи числення” Системи числення (СЧ) – це послідовність цифр і англійських букв, записана за певними правилами. СЧ бувають позиційними і непозиційних. Позиційні системи – це такі системи, в яких певний символ числа має різне значення, перебуваючи на різних позиціях. Наприклад, десяткова система є позиційною. Число 25 не дорівнює числу 52, так як певний символ, наприклад 5, залежить […]...
- Трансцендентні числа Трансцендентне число (від лат. transcendere – переступати, перевершувати) – це дійсне або комплексне число, яке не є алгебраїчним – іншими словами, число, яке не може бути коренем многочлена з раціональними коефіцієнтами (не дорівнює тотожно нулю). Залежно від того, над яким числовим полем розглядають многочлен з цілими коефіцієнтами, областями, над якими розглядаються трансцендентні числа, служать поля […]...
- Двійкова система числення – інформатика Двійкова система числення – це система, в якій використовується дві цифри: 0 і 1. Тобто будь-яке число буде записано комбінацією одиниць і нулів. Почнемо з перекладу чисел з десяткової системи числення в двійкову систему. Щоб перевести будь-десяткове число в двійкову систему числення, необхідно ділити дане число на 2. Якщо в результаті ділення відбувається без залишку, […]...
- Числовые множества Все числу можно отнести к той или иной группе, объединяя их по определенным признакам и свойствам. Простой и понятной множеством чисел являются натуральные числа. определение Натуральные числа – это числа, которые возникают естественным образом при счете предметов. Например: 1,2,3,4 … 1,2,3,4 … Числовые множества принято обозначать латинскими заглавными буквами с двойным штрихом. Множество натуральных чисел […]...
- Коротенько про десяткову систему числення Отже, ми познайомилися з натуральними числами, зі змістом, закладеним в них, і способом запису натуральних чисел за допомогою десяти цифр. Взагалі, метод запису чисел за допомогою знаків, називають системою числення. Значення цифри в записі числа може залежати від її позиції, а може і не залежати від її позиції. Системи числення, в яких значення цифри в […]...
- Найбільший спільний дільник. Взаємно прості числа Завдання. Яке найбільше число однакових подарунків можна скласти з 48 цукерок “Ластівка” і 36 цукерок “Чебурашка”, якщо треба використовувати всі цукерки? Рішення. Кожне з чисел 48 і 36 має ділитися на число подарунків. Тому спочатку випишемо всі дільники числа 48. Отримаємо: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48. Потім випишемо всі дільники […]...
- Простые и составные числа Теперь поговорим о сами числа. В этой части речь идет только о натуральные числа, поэтому дальше это не указывается. Определение Простые числа – те числа, делятся только на себя и на единицу. Например: 2,3,5,7,132,3,5,7,13. Составлены числа – те числа, которые имеют более чем 22 делители. Разложение составного числа на простые множители – это запись числа […]...
- Признаки делимости натуральных чисел Признаки делимости становятся в случае, когда надо узнать, или делится данное число на другое без остатка, не тратя время на процесс деления. Число aa делится нацело на: 22, если оно заканчивается на числа 0,2,4,6,80,2,4,6,8; 33, если сумма всех цифр, составляющих число, делится на 33; 44, если на 44 делится двузначное число, составленное из последних двух […]...
- Натуральні числа Просте число – це натуральне число. Їх використовують у повсякденному житті для підрахунку предметів, тобто для обчислення їх кількості і порядку. Що таке натуральне число: натуральними числами називають числа, які використовуються для підрахунку предметів або для вказання порядкового номера будь-якого предмета з усіх однорідних предметів. Натуральні числа – це числа, починаючи з одиниці. Вони утворюються […]...
- Послідовності – коротко Наприклад, є функція: d (n) = 2n. N – будь-яке натуральне число. Підставляємо у функцію числа: d (1) = 2; d (2) = 4; d (3) = 6; … Значить, d (1) – 1-е число в послідовності, d (2) – друге і т. д. Або їх можна позначити так: D1, d2, d3, … Це спрощує […]...
- Системи координат Зазвичай для опису простору використовується найбільш проста система координат, звана прямокутної. Її ще називають декартовій по імені французького вченого Рене Декарта, який вперше запропонував її в 1637 р (рис. 33, 34). У цій системі визначається точка, яка називається початком координат або точкою відліку. У цій точці перетинаються три взаємно перпендикулярні прямі, одна з яких називається […]...
- Взаємно прості числа Цілі числа будуть взаємно простими, коли у них не буде жодного спільного дільника (множника), не рахуючи ±1. Приклади: 14, 25 взаємно прості – не існує загальних дільників. 15, 25 не взаємно прості (загальний дільник 5). 6, 8, 9 взаємно прості – не існує дільників, загальних для 3-х чисел. Приклад: расстановим на площині точки з цілими […]...
- Ірраціональні числа Які числа є ірраціональними? Ірраціональне число – це не раціональне дійсне число, тобто воно не може бути представлено як дріб (як відношення двох цілих чисел), де m – ціле число, n – натуральне число. Ірраціональне число можна представити як нескінченну неперіодичну десяткову дріб. Ірраціональне число не може мати точного значення. Тільки у форматі 3,333333…. Наприклад, […]...
- Властивості елементів множини Об’єкти (наприклад, числа), що входять в певну множину, є елементами цієї множини. Наприклад, числа 10 і 14 є елементами безлічі натуральних чисел. Класи є елементами безлічі всіх класів школи. А ось, наприклад, число -5 не є елементом множини натуральних чисел. Також як клас із сусідньої школи, що не буде елементом множини класів вашої школи. Найчастіше […]...
- Найбільший спільний дільник (НСД) Вирішимо задачу. У нас є два типи печива. Одні шоколадні, а інші прості. Шоколадних 48 штук, а простих 36. Необхідно скласти з цього печива максимально можливе число подарунків, при цьому треба використовувати їх усі. Для початку випишемо всі дільники кожного з цих двох чисел, так як обидва ці числа повинні ділитися на кількість подарунків. Отримуємо, […]...
- Що таке канонічний розклад числа і де він використовується? Канонічним розкладанням натурального числа на прості множники називають таке його розкладання, коли множники записуються в порядку зростання. Наприклад: 50 = 2 × 5 × 5 124 = 2 × 2 × 31 280 = 2 × 2 × 2 × 5 × 7 Зазвичай канонічний розклад записують з використанням ступенів: 50 = 2 × 52 […]...
- Менше або більше За рахунку натуральні числа називають по порядку: 1, 2, 3, 4, 5, 6, 7, 8, 9 …… З двох натуральних чисел менше те, яке за рахунку називають раніше, і більше те, яке за рахунку називають пізніше. Число 4 менше, ніж 7, а число 8 більше, ніж 7. Одиниця – найменше натуральне число. Точка з меншою […]...
- Інерційні системи відліку Перший закон Ньютона формулюється так: тіло, несхильність зовнішніх впливів, або знаходиться в спокої, або рухається прямолінійно і рівномірно. Таке тіло називається вільним, а його рух – вільним рухом або рухом по інерції. Властивість тіла зберігати стан спокою або рівномірного прямолінійного руху при відсутності впливу на нього інших тіл називається інерцією. Тому перший закон Ньютона називають […]...